SPRING 2024: BONUS PROBLEM 1 SOLUTION

For the following bonus problem, you will receive up to 10 points added to your course total. Since this is a bonus problem, your answer must be essentially completely correct to receive bonus points. Please upload your solution **no later than** 6pm on Thursday, February 22.

Suppose V is a vector space over \mathbb{R} with basis $\alpha := \{v_1, \ldots, v_n\}$. Let $\{u_1, \ldots, u_n\}$ be vectors in V. Prove that the following statements are equivalent.

- (i) $\{u_1, \ldots, u_n\}$ is a basis for V.
- (ii) $\{[u_1]_{\alpha}, \ldots, [u_n]_{\alpha}\}$ is a basis for \mathbb{R}^n .
- (iii) The matrix A whose columns are $[u_1]_{\alpha}, \ldots, [u_n]_{\alpha}$ is invertible.

Solution. For (i) implies (ii): Let
$$v_0 := \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}$$
 be an arbitrary vector in \mathbb{R}^n . Set $v := a_1 v_n + \dots + a_n v_n \in V$.

Then $v = b_1 u_1 + \cdots + b_n u_n$, for $b_i \in \mathbb{R}$, by our assumption (i). Thus,

$$v_0 = [v]_{\alpha} = [b_1 u_1 + \dots + b_n u_n]_{\alpha} = b_1 [u_1]_{\alpha} + \dots + b_n [u_n]_{\alpha},$$

which shows that the vectors $\{[u_1]_{\alpha}, \ldots, [u_n]_{\alpha}\}$ span \mathbb{R}^n . Suppose $c_1[u_1]_{\alpha} + \cdots + c_n[u_n]_{\alpha} = \vec{0}$ in \mathbb{R}^n . Then $[c_1u_1 + \cdots + c_nu_n]_{\alpha} = \vec{0}$, which implies $c_1 + \cdots + c_nu_n = \vec{0}$ in V. By the assumption (i), $c_1 = \cdots = c_n = 0$, showing that $\{[u_1]_{\alpha}, \ldots, [u_n]_{\alpha}\}$ are linearly independent, and thus form a basis for \mathbb{R}^n .

Note: Since $\{[u_1]_{\alpha}, \ldots, [u_n]_{\alpha}\}$ are *n* vectors in \mathbb{R}^n it suffices to prove just one of the condition required of a basis. I included proofs of both to show how to prove each one.

For (ii) implies (iii): Let $e_i \in \mathbb{R}^n$ denote the *i*th standard basis vector. Then we can write

$$e_i = b_{i1}[u_1]_{\alpha} + \dots + b_{in}[u_n]_{\alpha}.$$

This means $A \cdot \begin{pmatrix} b_{i1} \\ \vdots \\ b_{in} \end{pmatrix} = e_i$. Thus, if we set $B := (b_{ij})$, we have $AB = I_n$, the $n \times n$ identity matrix. Strictly

speaking, one should also show $BA = I_n$, but if you got this far, that is good enough.

For (iii) implies (ii): We first note that the columns of A form a basis for \mathbb{R}^n . To see this, let C_1, \ldots, C_n be the columns of A. Suppose $v \in \mathbb{R}^n$. Set $w = A^{-1}v$ and suppose $w = \begin{pmatrix} c_1 \\ \vdots \\ c \end{pmatrix}$. Then

$$c_1C_1 + \dots + c_nC_n = Aw = A(A^{-1}v) = v.$$

This shows the columns of A span \mathbb{R}^n . Since these are n vectors in \mathbb{R}^n , they form a basis for \mathbb{R}^n . Now suppose $a_1u_1 + \cdots + a_nu_n = \vec{0}$ in V. Then in \mathbb{R}^n ,

$$\vec{0} = [a_1u_1 + \dots + a_nu_n]_\alpha = a_1[u_1]_\alpha + \dots + a_n[u_n]_\alpha.$$

Since $\{[u_1]_{\alpha}, \ldots, [u_n]_{\alpha}\}$ are linearly independent, $a_1 = \cdots = a_n = 0$, showing that u_1, \ldots, u_n are linearly independent. Thus, these vectors form a basis for V.