## SPRING 2024: BONUS PROBLEM 1 SOLUTION

For the following bonus problem, you will receive up to 10 points added to your course total. Since this is a bonus problem, your answer must be essentially completely correct to receive bonus points. Please upload your solution no later than 6 pm on Thursday, February 22.
Suppose $V$ is a vector space over $\mathbb{R}$ with basis $\alpha:=\left\{v_{1}, \ldots, v_{n}\right\}$. Let $\left\{u_{1}, \ldots, u_{n}\right\}$ be vectors in $V$. Prove that the following statements are equivalent.
(i) $\left\{u_{1}, \ldots, u_{n}\right\}$ is a basis for $V$.
(ii) $\left\{\left[u_{1}\right]_{\alpha}, \ldots,\left[u_{n}\right]_{\alpha}\right\}$ is a basis for $\mathbb{R}^{n}$.
(iii) The matrix $A$ whose columns are $\left[u_{1}\right]_{\alpha}, \ldots,\left[u_{n}\right]_{\alpha}$ is invertible.

Solution. For (i) implies (ii): Let $v_{0}:=\left(\begin{array}{c}a_{1} \\ \vdots \\ a_{n}\end{array}\right)$ be an arbitrary vector in $\mathbb{R}^{n}$. Set $v:=a_{1} v_{n}+\cdots+a_{n} v_{n} \in V$.
Then $v=b_{1} u_{1}+\cdots+b_{n} u_{n}$, for $b_{i} \in \mathbb{R}$, by our assumption (i). Thus,

$$
v_{0}=[v]_{\alpha}=\left[b_{1} u_{1}+\cdots+b_{n} u_{n}\right]_{\alpha}=b_{1}\left[u_{1}\right]_{\alpha}+\cdots+b_{n}\left[u_{n}\right]_{\alpha},
$$

which shows that the vectors $\left\{\left[u_{1}\right]_{\alpha}, \ldots,\left[u_{n}\right]_{\alpha}\right\}$ span $\mathbb{R}^{n}$. Suppose $c_{1}\left[u_{1}\right]_{\alpha}+\cdots c_{n}\left[u_{n}\right]_{\alpha}=\overrightarrow{0}$ in $\mathbb{R}^{n}$. Then $\left[c_{1} u_{1}+\cdots+c_{n} u_{n}\right]_{\alpha}=\overrightarrow{0}$, which implies $c_{1}+\cdots+c_{n} u_{n}=\overrightarrow{0}$ in $V$. By the assumption (i), $c_{1}=\cdots=c_{n}=0$, showing that $\left\{\left[u_{1}\right]_{\alpha}, \ldots,\left[u_{n}\right]_{\alpha}\right\}$ are linearly independent, and thus form a basis for $\mathbb{R}^{n}$.
Note: Since $\left\{\left[u_{1}\right]_{\alpha}, \ldots,\left[u_{n}\right]_{\alpha}\right\}$ are $n$ vectors in $\mathbb{R}^{n}$ it suffices to prove just one of the condition required of a basis. I included proofs of both to show how to prove each one.

For (ii) implies (iii): Let $e_{i} \in \mathbb{R}^{n}$ denote the $i$ th standard basis vector. Then we can write

$$
e_{i}=b_{i 1}\left[u_{1}\right]_{\alpha}+\cdots+b_{i n}\left[u_{n}\right]_{\alpha}
$$

This means $A \cdot\left(\begin{array}{c}b_{i 1} \\ \vdots \\ b_{i n}\end{array}\right)=e_{i}$. Thus, if we set $B:=\left(b_{i j}\right)$, we have $A B=I_{n}$, the $n \times n$ identity matrix. Strictly speaking, one should also show $B A=I_{n}$, but if you got this far, that is good enough.

For (iii) implies (ii): We first note that the columns of $A$ form a basis for $\mathbb{R}^{n}$. To see this, let $C_{1}, \ldots, C_{n}$ be the columns of $A$. Suppose $v \in \mathbb{R}^{n}$. Set $w=A^{-1} v$ and suppose $w=\left(\begin{array}{c}c_{1} \\ \vdots \\ c_{n}\end{array}\right)$. Then

$$
c_{1} C_{1}+\cdots+c_{n} C_{n}=A w=A\left(A^{-1} v\right)=v
$$

This shows the columns of $A$ span $\mathbb{R}^{n}$. Since these are $n$ vectors in $\mathbb{R}^{n}$, they form a basis for $\mathbb{R}^{n}$. Now suppose $a_{1} u_{1}+\cdots+a_{n} u_{n}=\overrightarrow{0}$ in $V$. Then in $\mathbb{R}^{n}$,

$$
\overrightarrow{0}=\left[a_{1} u_{1}+\cdots+a_{n} u_{n}\right]_{\alpha}=a_{1}\left[u_{1}\right]_{\alpha}+\cdots+a_{n}\left[u_{n}\right]_{\alpha} .
$$

Since $\left\{\left[u_{1}\right]_{\alpha}, \ldots,\left[u_{n}\right]_{\alpha}\right\}$ are linearly independent, $a_{1}=\cdots=a_{n}=0$, showing that $u_{1}, \ldots, u_{n}$ are linearly independent. Thus, these vectors form a basis for $V$.

